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a b s t r a c t

The wealth of estimates quantifying the well-to-tank (WTT) impacts of hydrogen vary

significantly. This variation is due to both methodology and the chosen production

pathway (gasification, electrolysis, or steam reforming). The statistical distribution of the

WTT estimates is non-Gaussian and this work demonstrates the adaptive kernel density

estimator as a robust, non-parametric statistical method for determining the underlying

probability density function. The approach is flexible, expandable and can be used to

investigate the development of hydrogen supply pathways through time. The adaptive

kernel density estimator outperforms the first generation (oversmoothed and least squares

cross-validation), second generation Sheather and Jones Plug-In and the median. In

particular, it represents the multimodal features of the data set better than both the first

and second generation methods with less variability than the least squares cross-

validation approach. The peak of the distribution represents the most likely pathway

(best estimate) for supplying hydrogen. This work suggests that the overall best estimate

for supplying hydrogen is by natural gas from Europe via central reforming, subject to

a trade-off between the energy impacts and the resultant emissions. Through time, the

overall hydrogen production process has become more energy efficient at the expense of

greater emissions per MJ delivered to the tank. The best-in-class pathway is that with the

lowest greenhouse gas emissions per MJ hydrogen delivered and represents the state-of-

the-art. Overall, the best-in-class pathway combination for providing hydrogen is by

electricity from renewables via electrolysis.
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1. Introduction

A robust, non-parametric statistical method is proposed to

answer the key question of what are the best well-to-tank

(WTT) pathways to supply hydrogen, based on the

numerous estimates available in the literature. The WTT

pathway comprises: transformation of the primary

resource; transportation of fuel intermediates; and distri-

bution of final fuel [1]. Each stage has associated energy and

emissions penalties. To reduce well-to-wheel (WTW) energy

use and greenhouse gas (GHG) emissions from road trans-

port, the use of non-conventional fuels and novel vehicle

topologies have been proposed and developed. One such

fuel is hydrogen. It is difficult to draw defensible compari-

sons across WTT estimates, within and between studies, on

account of the differences in assumptions and system

boundaries used. Consequently, estimates vary consider-

ably. Moreover, global trade means that a final fuel which

originates from natural resources in one country may be

processed in another and consumed in a third. Therefore, all

WTT supply pathways and associated impacts are relevant

to a global fuel trade.

Non-parametric statistical approaches are used to esti-

mate the probability density of a set of data with an unknown

underlying distribution. A list of distribution tests could be

performed on the set of WTT estimates to determine its

probability distribution. Rather than assume a discoverable,

closed-form distribution and attempt to fit the data to it,

a more defensible approach is to let the distribution emerge

from the data. Therefore, non-parametric density estimation

based on Gaussian sample point kernel density estimators is

proposed as a robust method to determine the best (highest

probability) representative. The emissions associatedwith the

WTT supply of hydrogen dominate those which arise due to

its in-vehicle use [2]. Consequently, for hydrogen to be

a competitive alternative to the conventional transport fuels,

its low emitting pathways must be identified. In the limit, the

‘best-in-class’ pathway is that with the lowest GHG emissions

per MJ delivered and thus represents the state-of-the-art.

The objective of using non-parametric methods should be

to estimate a distribution that closely approximates the true,

underlying distribution [3]. In practice, the methods attempt

to find the optimum bandwidth(s), h, of the data set to create

the probability density estimate which balances bias and

variability [4]. Specifically, as h increases, the number of bins,

m, shrinks resulting in large bias, small variance and an

oversmoothed distribution. Conversely, small h leads to

a large m, small bias, large variance: the result is an under-

smoothed distribution [5,6].

Non-parametric methods can be classified as first genera-

tion, second generation and adaptive. First generation

methods to determine optimum h assume an underlying

unimodal Gaussian distribution [5e7]. The bandwidth, h, is

generally chosen to minimize the mean integrated square

error (MISE). MISE is sub-optimal for multimodal densities [8]

on account of the global h being inappropriate for distribu-

tions with many features [6]. Moreover, the error minimiza-

tion techniques of MISE and asymptotic MISE require prior

knowledge of both the distribution function which is being
sought and its derivative. Cross-validation (CV) methods are

independent of the function and derivative, where the optimal

bin count is theminimumCVvalue over the range of bin count

possibilities, from 1 to m [8]. While CV methods are the most

studied [5] and used [9,10], they can suffer from too much

sample variability [11,12] on account of large bias [7].

More sophisticated second generation bandwidth esti-

mation methods, such as the plug-in and bootstrap methods,

are superior alternatives which offer a more sensible trade-

off between bias and variability, complete with rates of

convergence of n�5=14, asymptotic to n�1=2, where n is the

number of estimates. Thus, they surpass the first generation

rules-of-thumb and CV approaches which have rates of n�1=10

[6,12]. The Sheather and Jones plug-in method (SJPI) [13]

achieves the asymptotic best convergence rate and is

computationally more efficient than the bootstrap alterna-

tives [14,15]. However, plug-in methods use pilot estimates

for h which are based on a number of prior assumptions

about the true h and density. Consequently, if the initial

assumptions fail, the estimate is expected to be poor [3,15].

Fixed (first and second generation) bandwidth approaches

fail to account for the changes in data density [16]. Given that

the detail of the underlying distribution emerges as a result

of h (and associated data points within a bin), variable

bandwidth or adaptive kernel estimators have been

proposed.

Adaptive density estimation uses local smoothing to yield

an improved, global estimate by varying the bandwidth

chosen as the density of data changes. The bandwidth is

reduced in areas with higher density data in order to capture

all the features; and the bandwidth is increased at the tails of

the distribution, where the data is more sparse [17]. Kernel

density estimators can be biased near to the boundary or end

point rather than in the body of the data set proper. This is

known as the boundary bias or edge effect [7,9] which fixed,

symmetric kernels with boundary supports suffer from. Thus,

kernels which do not assign weight outside of the extremes of

the data set are proposed. In particular, the Gamma kernel is

free of boundary bias, always non-negative, obtains optimal

convergence rate of the MISE and accommodates sparse areas

in the distribution well [9]. Another approach to reducing

boundary effects is by data sharpening, where data is moved

from areas where it is sparse to those where the density is

higher [7]. In the context of the best WTT estimate, the MJ/MJ

value must be positive while the g GHG/MJ may be positive or

negative. Therefore, acknowledgement of the boundary

supports is necessary to ensure a sensible (particularly MJ/MJ)

estimate.

Hereafter, the adaptive kernel density estimator method is

introduced in Section 2, including the approach to weighting

and the metric for choosing the real-world pathway. It is

recognized that every primary resource used for producing

hydrogen may not have the required potential to displace

conventional fuels on a large-scale. Therefore, a weighting

factor is added to the WTT estimates based on their resource

potential to ensure realistic results. The best estimate result

of the statistical method represents the peak of the proba-

bility distribution which may not correspond to a real-world

pathway. Therefore, the real-world pathway chosen has the

smallest, absolute Euclidean distance to the distribution
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Table 2 e Weighting factors based on annual resource
potential (MJ/yr) for hydrogen overall and by its
gasification, electrolysis and steam reforming pathways.
The overall weight for each pathway and input resource
is normalized to the maximum resource potential across
all pathways and input resources. The weighting factor
per pathway is normalized to the maximum resource
potential for that particular pathway, across all input
resources.

Primary
pathway

Input resource Resource
potential

(1014 MJ/yr)

Weight

Overall By
pathway
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peak. There are four identified advantages of this method

which are discussed. The method is flexible, expandable, can

incorporate timing and be used for WTT estimates on other

transport fuels. In particular, the inclusion of timing via

a quasi-static analysis illustrates how the hydrogen supply

pathways have changed through time. These four advantages

and n analysis is included to demonstrate the sensitivity of

the results to the weighting factor and to compare the

performance of the adaptive kernel density estimator to the

first and second generation oversmoothed, least squares CV,

SJPI methods and the simple median are presented in

Section 3.
Gasification Wood [35] 0.2522 1.0000 1.0000

Wood waste [36] 1.5000 0.3000 0.3000

Electrolysis Country mix [37] 0.7321 0.1464 0.3849

Natural gas [38] 1.1603 0.2321 0.6100

Nuclear [37] 0.0987 0.0197 0.0519

Non-combustible 0.0047 0.0009 0.0025

renewables

and waste [37]

Coal [38] 1.9022 0.3804 1.0000

Wood [35] 0.2522 0.0504 0.1326

Steam

reforming

Natural gas [38] 1.1603 0.2321 1.0000
2. Method

The adaptive kernel density estimator is adopted as a robust

approach to estimating distributions whichmay exhibit many

features. The method proceeds by:

1. testing for statistical independence between the estimates

using the c2 test with a threshold of r > 0.05 (Table 1), as

a prerequisite for probability density estimation;

2. formulating a bandwidth estimate using the adaptive

kernel density estimator;

3. applying a bivariate Gaussian to each n� 2WTT estimate of

fuel, j, delivered across all pathways, i using the various h

estimates:

The Gaussian kernel is employed instead of the Gamma as

it is more commonly used in the literature and the kernel has

been shown to have less of an impact on the final non-

parametric distribution than the choice of h [5e7]. The MJ/MJ

component of the non-parametric distribution is truncated at

zero to ensure a positive WTT energy impact;

4. weighting each WTT estimate by the resource potential:

A weighting factor is included to account for input

resources and primary pathways which may yield low WTT

impact hydrogen, but are not sufficiently abundant to form

the basis for large-scale hydrogen supply. Therefore, the

WTT estimate was scaled by a weighting factor, which is

based on the production capacity or yield of its primary

resource (Table 2) and serves as a proxy for the long term
Table 1e Test for independence for entire hydrogenWTT
data set and by pathway. The number of estimates is
given by n and r > 0.05 is the c2 test used to determine
independence using the Matlab 7.6.0 R 2008a function,
crosstab. The test for a Gaussian distribution is included
for illustrative purposes using kstest.

Primary
pathway

n r Independent Gaussian

All 124 0.50 Yes No

Gasification 17 0.24 Yes No

Electrolysis 49 0.10 Yes No

Steam reforming 59 0.61 Yes No
supply potential. The weighting factor is the quotient of each

primary resource capacity to the maximum capacity for the

particular pathway (Eq. (1)). Therefore, the primary

resources with maximum potential are assigned one and

those with smaller potentials are given a positive weight less

than one; and

5. repeating the above steps for each pathway, i.

The bandwidth, h, was determined individually for each

dimension in the n � 2 data vector of MJ/MJ and g GHG/MJ

estimates and later combined to yield the two dimensional

density estimate. The algorithm was implemented in Matlab

7.6.0 R 2008a.

1. The adaptive kernel estimator followed the procedure given

in [16] to:

(a) Split the data into a large number of evenly spaced

bins, m_bins ¼ 100, noting the frequency and bin

position;

(b) Determine the number of bins with nonzero frequen-

cies. That is, disregard empty bins to yield a new upper

bin count, m_unique < m_bins;

(c) Perform leave-one-out least squares CV by iterating

through the number of bins from 1 to m_unique ¼ m.

hbinned is chosen corresponding to the minimum value

of the CV. The least squares CV is calculated in three

parts, given as f1, f2 and f3 in Eq. (1):

The components of Eq. (2) are given in Eqs. (3)e(5) by:

(d) Choose the optimum bin as that which corresponds to the

minimum of the least squares CV and the corresponding

bandwidths for bins 1 to optimum_bin;

http://dx.doi.org/10.1016/j.ijhydene.2011.04.173
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Fig. 1 e Scatter of MJ and emitted g GHG when delivering 1 MJ hydrogen, across the steam reforming (red), electrolysis

(yellow) and gasification (green) pathways ([2,22e32]). (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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(e) Apply this vector of hadap of length ¼ 1:optimum_bin to the

data by matching smallest hadap (i) to bin with highest

frequency, in decreasing order and apply hadap (i) to all

estimates in the same bin, i

(f) Calculate density estimate in Eq. (6) :

2. Use the bandwidth in a bivariate Gaussian2 function to

determine the probability distribution;

3. Identify thevalues in eachdimensionof then� 2data vector

of g GHG/MJ and MJ/MJ estimates corresponding to the

indicesof thehighestprobabilityas thebest estimatevalues;

4. Select the real pathway closest to the peak in the proba-

bility distribution by minimum Euclidean distance; and

5. Choose the best-in-class g GHG/MJ pathway as the data

vector entry with the smallest g GHG/MJ impact and cor-

responding MJ/MJ value. The best-in-class estimate is

independent of the weighting as it represents the state-of-

the-art without regard for large-scale potential.

The primary results of thiswork are based on a static (time-

independent) picture of the state of hydrogenWTT pathways.

Themethodmay be repeated at discrete time steps in a quasi-

static manner to illustrate how the best estimate moves with

time.

The results presented do not consider the cost of supplying

hydrogen, however the method and the insights into learning

may be extended in that direction. Costs are excluded as they
2 The m-file available at http://www.mathworks.com/
matlabcentral/fileexchange/22999 was modified for this purpose.
are relatively few studies which provide the WTT MJ/MJ and g

GHG/MJ metrics with associated costs of supply (V/MJ). The

non-parametric method proposed is most robustly demon-

strated using themaximumnumber of estimates of MJ/MJ and

g GHG/MJ. Including best estimate and best-in-class costs

would be achieved by a repeat of the non-parametric method

using the reduced data set of two studies to maintain

consistency across the three metrics. Thus, it is believed that

more would be lost in using a reduced data set to justify the

non-parametric method than would be gained by including

costs.

Using the above adaptive kernel density estimatormethod,

the static analysis proceeds by presenting the best estimate

and best-in-class pathway for supplying hydrogen overall and

bye gasification, electrolysis and steam reforminge pathway,

as presented in the literature. The gasification pathway begins

with farmed wood or wood waste which is chipped for

transport by road or sea. The biomass may be directed to

a centralized gasification plant, from which the hydrogen

product is compressed or liquefied and distributed by pipeline

or road to the filling station. Alternatively, the biomassmay be

transported directly to the filling station for decentralized,

onsite gasification.

The electrolysis pathway has the most diverse primary

resource option set, ranging from natural gas, coal and other

fossil-fuels, both combustible and non-combustible renew-

ables and waste to nuclear power plants. In all cases, the

electricity is an intermediate product. It may be transmitted to

a centralized electrolysis facility, from which the hydrogen is

http://www.mathworks.com/matlabcentral/fileexchange/22999
http://www.mathworks.com/matlabcentral/fileexchange/22999
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Fig. 2 e WTT estimates (blue dots) of supplying hydrogen across all pathways with contour plots (lines) of probability

distribution of WTT MJ/MJ and g GHG/MJ impacts across the a) adaptive kernel, b) least squares CV, c) oversmoothed and d)

SJPI methods, respectively. The distribution peak, indicating the best estimate, is denoted with a green circle and the

median of the distribution given by a red star. Iso-contours are labelled with the corresponding distribution probability. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3 An m-file implementation of this method is available at http://
www.mathworks.com/matlabcentral/fileexchange/22999.
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transported by pipeline or road to the filling station. Alterna-

tively, the electricity may be transmitted to the filling station

for decentralized, onsite electrolysis.

The steam reforming pathway begins with natural gas

extraction, with three possible downstream paths. In the first

instance, the hydrogen is produced by steam reforming of the

natural gas at the point of extraction (wellhead). The second

option is to compress or liquefy the natural gas for long

distance transport by pipeline or ship to a centralized steam

reforming plant. The hydrogen thus produced is liquefied or

compressed for transport by pipeline or road to the filling

station. The remaining option is to pipe natural gas to filling

stations for decentralized, onsite reforming.

The non-parametric method is repeated on a quasi-static

basis. An error analysis is conducted between the adaptive

kernel and other non-parametric density estimation

methods e oversmoothed and CV approach (first genera-

tion), the SJPI (second generation) e and the median. There

is a further investigation into the effects of including the

weighting factor. Statistical robustness refers to the insen-

sitivity of an estimate to small deviations from the

assumptions, resulting in a large breakdown point. The

breakdown point is the smallest fraction of errant
observations which skews the estimate to an arbitrarily

large (magnitude) value [18]. The median is used instead of

the mean as the former has the maximum breakdown point

of 0.5, whereas the mean has the smallest breakdown point

of 1/n [19]. The oversmoothed estimator is given by

hos ¼ 1:144 � dataiqr � n�1=5 [7], where data_iqr is the inter-

quartile range of the data and n is the number of data points.

The SJPI method was given in [20] 3to yield hsjpi. Both hos and

hsjpi were applied to the bivariate Gaussian function the

method already described.
3. Analysis and discussion

A scatter plot of primary WTT estimates across the hydrogen

pathways illustrates the range values, demarked by ellipses

[21] (Fig. 1). The 124 estimates used in this study derive from13

publicly available, published sources [2,22e33]. Two of the

most popularly cited sources are the Greenhouse Gases,

Regulated Emissions, and Energy Use in Transportation

http://www.mathworks.com/matlabcentral/fileexchange/22999
http://www.mathworks.com/matlabcentral/fileexchange/22999
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Fig. 3 eWTT estimates (blue dots) of supplying hydrogen by gasification with contour plots (lines) of probability distribution

of WTT MJ/MJ and g GHG/MJ impacts across the a) adaptive kernel, b) least squares CV, c) oversmoothed and d) SJPI

methods, respectively. The distribution peak, indicating the best estimate, is denoted with a green circle and the median of

the distribution given by a red star. Iso-contours are labelled with the corresponding distribution probability. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(GREET) Model [25] and Concawe reports [2] and are included

in this analysis. Studies which re-state the findings from any

work already included in this research, are omitted to avoid

duplication.

A noticeable feature of the probability density functions

(Figs. 2e5) is the presence of multiple modes which can be

attributed to the different primary resources which are used

in the particular production pathway and year of WTT esti-

mates. The modes are most noticeable for gasification (Fig. 3)

and electrolysis (Fig. 4).

Across all pathways, there are three strata for low, inter-

mediate and high g GHG/MJ impacts across all MJ/MJ energy

use. The group of estimates with low GHG impacts consist of

gasification (green ellipse in Fig. 1) and electrolysis using

electricity from renewable sources. The intermediate GHG

impacts arise from steam reforming (red ellipse in Fig. 1) of

natural gas and electrolysis using electricity from gas or

country mixes with a large proportion of gas. The high GHG

impacts stratum represents electrolysis from electricity using

coal and country mixes with a large proportion of coal. The

majority (102, or 82%) of the 124WTT estimates lie at less than

2.8 MJ/MJ and in the intermediate band of GHG impacts,
coinciding with the position of the distribution peak (red star

in Fig. 2).

The probability density function for gasification indicates

three modes which depend more so on the wood/biomass

type than on the gasification process. The three modes reflect

high energy and high GHG impacts, low energy with inter-

mediate GHG impacts and low energy use with high GHG

impacts. The first case represents the pathways using poplar

wood as the primary resource. Low energy use and interme-

diate GHG impacts derive from both farmed and waste wood,

in central and onsite gasification. The high energy, low GHG

impact pathways are generally supplied with woody biomass,

farmed or waste. The results are more sensitive to the wood/

biomass source, as demonstrated with the poplar, implying

that the wood type be included in future WTT estimates for

clarity.

The probability density function for hydrogen from elec-

trolysis indicates three strata of increasing g GHG/MJ impact,

corresponding to electricity from renewables, gas and coal,

respectively. The three groups of WTT estimates are: those

with g GHG/MJ less than 100; between 100 and 300 g GHG/MJ;

and greater than 300 g GHG/MJ. The estimates in the first

http://dx.doi.org/10.1016/j.ijhydene.2011.04.173
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Fig. 4 e WTT estimates (blue dots) of supplying hydrogen from electrolysis with contour plots (lines) of probability

distribution of WTT MJ/MJ and g GHG/MJ impacts across the a) adaptive kernel, b) least squares CV, c) oversmoothed and d)

SJPI methods, respectively. The distribution peak, indicating the best estimate, is denoted with a green circle and the

median of the distribution given by a red star. Iso-contours are labelled with the corresponding distribution probability. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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stratum correspond to electrolysis from renewables; those in

the intermediate band represent electrolysis using natural

gas and country mix primarily; and WTT estimates in the

upper band utilize coal and country mix. The country mixes

in the intermediate band are from the European studies,

which are largely natural gas based, while those in the upper

stratum are the US mixes, of which coal is the major

constituent fuel.

The probability density function for hydrogen from steam

reforming of natural gas shows two main trend lines, largely

divided by the year of WTT estimate. Both subsets of WTT

estimates span the range of energy uses. The larger, longer

group accounts for intermediate to high energy GHG impacts,

while the smaller set covers low tomediumGHG impacts. The

two groups are completely separable by a line y¼ 69.5xþ 19.6.4

Both groups contain estimates for EU and non-EU natural gas,

reformed centrally and onsite, with compression and lique-

faction. The larger group contains 43 of the 55 estimates, or

78.2% and comprises the newest WTT studies from 2005 [22]

and 2007 [2,25], save one estimate from 2000 [24].

Conversely, the smaller group is largely represented by 2002

estimates [23], with two estimates from 2006 [28,29].
4 This separating line joins the median points between the two
extremes of each subset.
Three further observations (Figs. 2e5) justify the use of the

kernel density estimator method: inappropriateness of the

median as a best estimate approximation; multimodal

distributions; and large bias of the CV approach. The median

(green circle) is a statistically robust measure of the centre of

the data. However, it is not coincident with the distribution

peak (red star). Therefore, this measure of central tendency

does not offer an accurate WTT best estimate based on the

data.

All the methods agree on which peak is the largest,

although only the distributions which derive from the least

squares CV and adaptive kernel methods reflect the multi-

modal features. The oversmoothed method draws the distri-

bution into a single large mountain and associated lone peak,

while the SJPI approach resolves individual peaks upon the

same large mountain. This contrasts the output from least

squares CV and adaptive kernel which shows almost-

completely distinct hills. A simple histogram, based on

a unimodal Gaussian distribution would fail to account for the

multiple features of these datasets. Moreover, the simple

oversmoothed andmore advanced SJPI fail to capture the finer

distribution details.

The least squares CV method can produce a distribution

which is too variable e true and potentially spurious

features e due to large bias [7]. The distribution derived

http://dx.doi.org/10.1016/j.ijhydene.2011.04.173
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Fig. 5 e WTT estimates (blue dots) of supplying hydrogen from steam reforming with contour plots (lines) of probability

distribution of WTT MJ/MJ and g GHG/MJ impacts across the a) adaptive kernel, b) least squares CV, c) oversmoothed and d)

SJPI methods, respectively. The distribution peak, indicating the best estimate, is denoted with a green circle and the

median of the distribution given by a red star. Iso-contours are labelled with the corresponding distribution probability. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3 e Best estimates and best-in-class pathways for hydrogen supplyWTT impacts overall and by pathway. The error
is the absolute Euclidean difference between the best estimate and the nearest actual pathway from theWTT estimates set.
The units for the Euclidean distance are g GHG per MJ used to produce the hydrogen (input). A “-” indicates that there is no
error for the best-in-class pathways since they represent actual WTT estimates.

Best estimate
with weighting factor

MJ/MJ g GHG/MJ Specific route Error g GHG/MJ
input

Overall 1.09 92.97 EU natural gas mix, central reforming [23] 3.02

Gasification 1.97 7.80 Residual woody biomass, onsite gasification [23] 0.51

Electrolysis 1.62 16.23 Electricity from solar photovoltaics, central electrolysis [25] 1.06

Steam reforming 0.85 114.91 Natural gas in North America, central reforming [22] 0.26

Best-in-class

Overall 0.59 0.00 Electricity from renewables in USA, onsite electrolysis [22] e

Gasification 1.84 6.60 Residual woody biomass, onsite gasification [23] e

Electrolysis 0.59 0.00 Electricity from renewables in USA, onsite electrolysis [22] e

Steam reforming 1.20 35.71 Thermal cracking of natural gas [33] e

Overall 1.09 92.97 EU natural gas mix, central reforming [23] 3.02

Gasification 1.97 7.80 Residual woody biomass, onsite gasification [23] 0.51

Electrolysis 1.62 16.23 Electricity from solar photovoltaics, central electrolysis [25] 1.06

Steam reforming 0.85 114.91 Natural gas in North America, central reforming [22] 0.26
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from the adaptive kernel method is less variable (noticeable

in Fig. 4) and may represent a better blend of bias and

variance.

The overall best estimate for providing 1 MJ of hydrogen

(Table 3) uses natural gas from the EU with centralized

reforming [23], resulting in WTT impacts of 1.1 MJ energy

required and 93 g GHG emitted. The overall best-in-class

hydrogen supply pathway is from the electrolysis using

electricity from renewables in the USA [22], with impacts of

0.6 MJ/MJ and 0 g GHG/MJ. The emissions-free supply of

hydrogen using the best-in-class pathway disregards the

pollution which arises during the other stages of the wind

farm life cycle [34]. The exclusion of externalities highlights

the difficulty of comparing WTT estimates across studies on

account of the varying assumptions and system boundaries

which the non-parametric, adaptive kernel density approach

addresses.

There is a trade-off between the pathwayswhichminimize

energy and GHG impacts, respectively. The highest WTT MJ/

MJ impact pathway for supplying hydrogen is by gasification

of residual woody biomass (2.0 MJ/MJ, 7.8 g GHG/MJ) [23].

Steam (central) reforming of natural gas in North America

carries the largest WTT GHG burden (0.9 MJ/MJ, 114.9 g GHG/

MJ) [2]. If the priority is to reduce emissions, the aforemen-

tioned gasification pathway is best. Conversely, an objective to

reduce the energy used to make the hydrogen suggests that

steam reforming of natural gas should be chosen. In the limit,
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series is 2000 (open circle) and arrows indicate the direction of t

(For interpretation of the references to colour in this figure lege
using the state-of-the-art, deriving hydrogen from electricity

generated from renewable sources gives the lowest energy

and GHG WTT impacts.

When a quasi-static timing is introduced, MJ/MJ energy

efficiency improves for the best estimate at the expense of

higher g GHG/MJ, while both energy and emissions efficiency

increase through time for the best-in-class pathway. The

time trajectories of the overall best estimates and best-in-

class pathways from the oldest estimate to the most recent

one (Fig. 6) are not linear. In general, natural gas pathways

constitute the overall best estimates by year, whereas elec-

tricity from renewables is the best-in-class pathway for

delivering low GHG-emitting hydrogen through from 2000 to

2010 (Tables 4 and 5). Viewing energy impacts alone, the best

estimates and best-in-class pathways show improvements of

5.4% and 5.1% per year. Conversely, annual g GHG/MJ impacts

worsen for the best estimate at 1.8%, while improving for the

best-in-class pathway at 4.7%. By pathway, the trend of

increasing MJ/MJ energy efficiency with higher g GHG/MJ

impacts is observed over the best estimates and best-in-class

pathways. Exceptionally, both the electrolysis best estimate

and its equivalent best-in-class pathway show decreasing MJ/

MJ and g GHG/MJ efficiencies from 2000 to 2010. The

Euclidean distance between the first and last years in the

time series is used to combine the two WTT impacts into an

overall change in impacts. The units for the Euclidean

distance are g GHG per MJ used to produce the hydrogen
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ass pathways (red) WTT impacts. The first year of the time
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Table 4 e Best estimates and best-in-class pathways for hydrogen supply WTT impacts overall and by pathway, by year,
when data is available. The number of estimates used for each year is given by n. The error is the absolute Euclidean
difference between the best estimate and the nearest actual pathway from the WTT estimates set. The units for the
Euclidean distance are g GHG per MJ used to produce the hydrogen (input). Where there is no error, either because there is
only one estimate or the best-in-class pathway is being represented, a “-” is used (Table 1 of 2).

Overall
best estimate

n MJ/MJ g GHG/MJ Specific route Error g GHG/MJ input

2000 3 2.06 70.46 Electricity from solar photovoltaics in Algeria,

central electrolysis, liquefied [26]

10.98

2002 29 2.21 75.53 Natural gas in the EU, central reforming [23] 12.48

2004 3 1.90 128.81 Electricity from wind, electrolysis [30] 120.73

2005 29 1.24 141.05 Natural gas in North America, central reforming [22] 1.48

2006 4 1.40 82.66 Natural gas, reformed [28] 0.54

2007 50 1.21 80.80 Natural gas, piped 4000 km, central reforming [2] 17.40

2009 3 1.14 41.37 Autocatalytic decomposition of 50% methane [33] 3.27

2010 3 0.95 71.75 Compressed wood, gasified [27] 48.32

Best-in-class

2000 3 2.02 44.88 Electricity from solar photovoltaics in Canada,

central electrolysis, liquefied [26]

e

2002 29 1.65 0.00 Electricity from wind, central electrolysis [23] e

2004 3 1.90 128.81 Electricity from wind, electrolysis [30] e

2005 29 0.59 0.00 Electricity from renewables in USA, onsite electrolysis [22] e

2006 4 1.58 23.68 Electricity from wind energy [29] e

2007 50 1.50 6.55 Electricity from nuclear energy, central electrolysis [25] e

2009 3 1.20 35.71 Thermal cracking of natural gas [33], e

2010 3 0.99 23.43 Gasification of wood [27] e

Gasification best estimate

2002 8 1.90 21.48 Biomass from poplar, central gasification [23] 0.89

2007 8 1.12 13.32 Farmed wood, central gasification [2] 0.18

2010 1 0.99 23.43 Non-North American natural gas, central gasification [22] e

Best-in-class

2002 8 1.84 6.90 Biomass from residual wood, central gasification [23] e

2007 8 1.50 8.10 Farmed wood, central gasification, liquefied [2] e

2010 1 0.99 23.43 Non-North American natural gas, central gasification [22] e
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(input). For the best estimates, there is a 0.2% annual

decrease in impacts. For the best-in-class pathways, WTT

impacts decrease by 4.7% annually. It may be inferred that

the estimates reflect the focus of the literature of the day and

by extension, the pathway(s) which are receiving the most

attention. However, it is acknowledged that the trajectories

will be affected by the small datasets used to find the best

estimate and best-in-class pathway for each year. Therefore,

the quasi-static analysis presented should be viewed as an

exercise in the power of the adaptive kernel density esti-

mator method instead of the basis for drawing firm conclu-

sions on the progress of WTT hydrogen production pathways

through time.

3.1. Error analysis

The absolute error between the adaptive kernel density

method and other non-parametric approaches decreases

from the least squares CV to the SJPI, oversmoothed and

median. The median absolute error across the alternative

methods is 16.3 g GHG/MJ input (Table 6). The least-squares

CV method offered results which were closest to those of

the adaptive kernel, consistentwith expectations the adaptive

kernel method is based on least squares CV. At the other end

of the scale, using the median gives errors up to 173.8 g GHG/
MJ input, consistent with the large differences between the

red star and green circle (Figs. 2-5).

The difference between the real-world pathways chosen

by different methods is more important than the peak in

their respective distributions. In considering pathways, no

single method yields a real-world pathway that either

consistently matches or is consistently different from that

chosen by the adaptive kernel density approach. However, at

least one of the estimates using an alternative method yields

a pathway which equals that chosen by the adaptive

approach.

Across all methods and studies, the best estimate path-

ways to supply hydrogen use steam reforming of natural gas.

The least squares CV approach chooses the same WTT

pathway as the adaptive kernel, while each of the other

methods select different pathways each.

For gasification, the least squares CV and SJPI approaches

select the same real-world pathway as the adaptive method,

while the median and oversmoothed choose the same

pathway as each other, but different from the adaptive kernel

method. The electrolysis production process sees different

methods across each of the four methods, with least squares

CV proposing the same one as the adaptivemethod. For steam

reforming, the least squares CV and SJPI choose the same

natural gas pathway as the adaptive methods. The median
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Table 5 e Best estimates and best-in-class pathways for hydrogen supply WTT impacts overall and by pathway, by year,
when data is available. The number of estimates used for each year is given by n. The error is the absolute Euclidean
difference between the best estimate and the nearest actual pathway from the WTT estimates set. The units for the
Euclidean distance are g GHG per MJ used to produce the hydrogen (input). Where there is no error, either because there is
only one estimate or the best-in-class pathway is being represented, a “-” is used (Table 2 of 2).

Electrolysis
best estimate

n MJ/MJ g GHG/MJ Specific route Error g GHG/MJ input

2000 2 2.02 44.88 Electricity from solar photovoltaics

in Canada, central

electrolysis, liquefied [26]

0.79

2002 13 4.62 207.53 Electricity from the EU mix, central electrolysis [23] 0.47

2004 3 1.90 128.81 Electricity from wind, electrolysis [30] 120.73

2005 5 1.76 146.33 Electricity from natural gas in a CCGT,

onsite electrolysis [22]

24.26

2006 2 1.56 25.11 Electricity from wind [29] 1.43

2007 24 1.50 16.74 Electricity from solar photovoltaics, central

electrolysis [25]

0.56

2010 1 2.09 121.26 Electrolysis [27] e

Best-in-class

2000 2 2.02 44.88 Electricity from solar photovoltaics in

Canada, central electrolysis, liquefied [26]

e

2002 13 1.65 0.00 Electricity from wind, central electrolysis [23] e

2004 3 1.90 128.81 Electricity from wind, electrolysis [30] e

2005 5 2.09 181.21 Electricity from USA mix in California,

onsite electrolysis [22]

e

2006 2 1.58 23.68 Electricity from wind energy [29] e

2007 24 1.50 6.55 Electricity from nuclear energy,

central electrolysis [25]

e

2010 1 0.99 23.43 Gasification of wood [27] e

Steam reforming best estimate

2000 1 0.77 132.00 Natural gas, onsite reforming [24] e

2002 9 1.86 107.00 Natural gas from Russia, central reforming [23] 1.60

2005 24 1.13 134.77 Non-North American natural gas,

central reforming [22]

1.19

2006 2 1.38 81.67 Natural gas from North America,

central reforming [29]

0.03

2007 18 0.84 108.72 Liquified natural gas, onsite reforming [2] 1.22

2009 3 1.14 41.37 Autocatalytic decomposition

of 50% methane [33]

3.27

2010 1 0.88 120.60 Natural gas [27] e

Best-in-class

2000 1 0.77 132.00 Natural gas, reformed onsite [24] e

2002 9 1.57 88.00 Natural gas from the EU, central reforming [23] e

2005 24 0.60 97.39 Natural gas from North America, central reforming [22] e

2006 2 1.38 81.67 Natural gas from North America,

central reforming [29]

e

2007 18 0.77 37.20 Natural gas, piped 4000 km, central

reforming with CCS [2]

e

2009 3 1.20 35.71 Thermal cracking of natural gas [33], e

2010 1 0.88 120.60 Natural gas [27] e
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and oversmoothed methods yield different natural gas path-

ways each (Table 7).

There is no difference in resultse overall and by pathwaye

when the weighting factor is present in the adaptive kernel

method (Table 3). However, the oversmoothed and least

squares CV methods yield different results without the

weights. The adaptive kernel method uses different band-

widths depending on the density of the data: when the data is

clustered, the bandwidth is small to capture the features; and

when the data is sparse, the bandwidth is large to avoid
spurious peaks. Conversely, the first and second generation

methods to which the adaptive kernel method is compared

use a single bandwidth across the entire data set. Therefore, it

is inferred that the adaptive kernel method is biased by the

relative density of data points which overshadows the

resource potential weighting factor. In contrast, the fixed

bandwidth oversmoothed, least squares CV and SJPI methods

do not introduce a data clustering bias, leaving the weighting

factor to influence the peak of the probability density

function.
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Table 6e BestWTT estimates for hydrogen based onmedian, oversmoothed, least squares CV and SJPImethods. The error
to adaptive kernel density best estimate is the absolute Euclidean distance to the best estimates found by the other
methods. The error to real-world pathway is the absolute Euclidean distance from real-world pathway corresponding to
the adaptive kernel density best estimate to the best estimates found by the other methods.

Pathway Median Oversmoothed Least squares CV SJPI

MJ/MJ g GHG/MJ MJ/MJ g GHG/MJ MJ/MJ g GHG/MJ MJ/MJ g GHG/MJ

Overall 1.61 118.04 1.26 98.88 1.09 92.97 1.09 116.58

Gasification 1.84 14.20 1.60 14.32 1.97 7.80 1.89 9.10

Electrolysis 2.63 190.00 2.03 81.17 1.56 16.23 1.68 28.04

Steam reforming 1.22 122.40 0.97 120.61

Error to adaptive kernel density best estimate

Minimum 6.40 5.71 0.00 0.03

Median 16.29 6.22 0.01 6.56

Maximum 173.77 64.93 0.06 23.61

62.25 1070.43 25.03 400.00 0.00 0.00 3.57 72.73

Error to real-world pathway

Minimum 5.90 4.87 0.51 0.82

Median 61.35 34.95 0.95 5.79

Maximum 172.71 96.88 90.98 114.59

Table 7eHydrogen production pathways corresponding to the bestWTT estimates using themedian, oversmoothed, least
squares CV and SJPI methods.

Method Pathway

All Gasification Electrolysis Steam reforming

Median Liquefied natural gas (LNG), Farmed wood, Electricity from natural gas Natural gas, piped 7000 km,

Onsite reforming [2] central gasification [2] in CCGT, onsite electrolysis [23] onsite reforming [2]

Oversmoothed Natural gas, piped 4000 km Farmed wood, Electricity from solar photovoltaics Compressed natural gas [27]

central reforming, central gasification [2] in Algeria, electrolysis, liquefied [26]

trucked to station [2]

Least

squares CV

EU natural gas mix, Residual woody biomass, Electricity from solar photovoltaics, North American natural gas,

Central reforming [23] onsite gasification [23] central electrolysis [25] onsite reforming [22]

SJPI Non-North American natural gas, Residual woody biomass, Electricity from farmed wood, North American natural gas,

Onsite reforming via LNG [22] onsite gasification [23] in conventional power plant, onsite reforming [22]

onsite electrolysis [2]
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4. Conclusions

This research has applied non-parametric statistical methods

to understand the distribution of WTT estimates for

producing hydrogen through combined and single pathways

(gasification, electrolysis and steam reforming). This is justi-

fied by the expanding set of WTT estimates which are based

on different assumptions and boundary conditions. The

weighted adaptive kernel density estimate is proposed as

a flexible, expandable method for extracting the unknown

probability density function using a data-driven method, on

both static and quasi-static bases.

The adaptive kernel density method offers a better esti-

mate than the first and second generation non-parametric

methods (oversmoothed, least squares CV, and SJPI) and the

median. The adaptive method captures the multimodal

features of the distribution better than the oversmoothed and

SJPI without the same degree of variability as the least squares

CV. The median is the least appropriate measure for finding

the peak of the underlying distribution of the WTT estimates.

In the case of hydrogen production, adding the resource
weighting had no effect on the best estimate output of the

adaptive method. This is attributed to the adaptive kernel

already applying a weight to the bandwidth based on the

density of the data. Conversely, the fixed bandwidth methods

exhibit changes when weighting is present versus when it is

absent. These methods use fixed bandwidths such that the

only biasing present in the distribution arises from the applied

resource potential weight. However, it is suggested that

a resource weighting will be a suitable addition for other WTT

estimate distributions.

Overall, the best estimate pathway for supplying hydrogen

is by natural gas from the EU mix with centralized reforming.

Onsite gasification of woody biomass, electricity from

renewables in the EU and North American natural gas cen-

trally reformed are the best estimates pathways for providing

hydrogen from gasification, electrolysis and steam reforming,

respectively. There is an observed trade-off between the

lowest GHG-emitting pathway and that requiring the least

energy per MJ hydrogen delivered. A quasi-static analysis of

the hydrogen supply overall and by pathways indicates that

energy efficiency has increased at the expense of emissions

efficiency through time.
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The best-in-class pathway is that with the lowest GHG per

MJ hydrogen supplied and represents the state-of-the-art. In

the limit of the externalities associated with the remainder of

the power plant life cycle and supply chains being dis-

regarded, electrolysis from renewables in the USA potentially

provides a zero GHG/MJ fuel option. This paper does not

address the technical, economic, or political barriers to

implementing hydrogen as a transport fuel and the proposed

method should not be seen in isolation fromother elements of

advice for decision-makers.
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Notations and Abbreviations

� WTT: Well-to-tank;

� WTW: Well-to-wheel;

� MISE: Mean integrated squared error;

� CV: Cross-validation;

� h: optimum bandwidth of the data set used to create

probability density estimatewhich balances bias and

variability;

� m: the number of bins, where m ¼ 1=h;

� MJ/MJ: The energy expended, excluding that transferred to

the final fuel, per MJ of energy content in the final

fuel [1];

� GHG: greenhouse gas;

� g GHG/MJ: The emissions (g GHG) associatedwith each stage

of energy use in the WTT pathway;

� Best estimate pathway: The pathway which is closest to

peak of the probability distribution which results

from the non-parametric estimation method;

� Best-in-class pathway: The WTT pathway with the lowest

GHG emissions per MJ of hydrogen delivered;

� SJPI: Sheather and Jones plug-in method, a second

generation bandwidth estimation method which

offers better performance than first generation

rules-of-thumb and CV approaches;

� n: number of entries in the data set;

� hbinned: The bandwidth h corresponding to the minimum CV

value; and

� hadap: The vector of optimum h corresponding to the density

of data in each bin, m.
Math formulae

weight overalli ¼ primary resource capacityi

max ðprimary resource capacityÞi
(1)
�ci pathways
lsqcvðiÞ ¼ f1ðiÞ þ f2ðiÞ þ f3ðiÞ; (2)

f1ðiÞ ¼ 1
n2

Xm

i¼1

Xn

j¼1

freq1ðiÞ2:½GðtðiÞ;hðiÞ; cÞ � GðtðiÞ;hðiÞ; cÞ�; (3)

where:

� n is the number of estimates in the data vector;

� freq1(i) is the frequency count of estimates in bin i;

� c¼[min_x�2*max_h, max_xþ2*max_h], incremented by

(max_xþ2*max_h�min_x�2*max_h)/vec_length where

vec_length ¼ 50;

� max_x,min_x,max_h,min_h are themaximumvalues of data

and h, where h(i)¼data_range/i and data_range¼max_x�min_x;

� * represents a two dimensional convolution;

� t(i) is the mid-point of the bin i; and

� G is a univariate Gaussian function with m ¼ 0, s ¼ h.

f2ðiÞ ¼ 1
n2

Xm Xn Xm
ni:nk:½GðtðiÞ;hðiÞ; cÞ � GðtðkÞ;hðkÞ; cÞ�; (4)
i¼1 j¼1 k¼1
where:

� ni:nk ¼ freq1ðiÞ:freq1ðkÞcisk; 0 otherwise.

f3ðiÞ ¼ �2
nðn� 1Þ

Xm Xn Xm
nik:GðtðiÞ;hðiÞ; cÞ; (5)
i¼1 j¼1 k¼1
where:

� nik ¼ freq1ðiÞcisk;nik ¼ freq1ðiÞ � 1 otherwise.

fadapðiÞ ¼
Xoptimum bin XfreqðiÞ

GðtðiÞ;hðiÞ; cÞ; (6)

i¼1 j¼1
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